
LLNL-CONF-676454

Silo/HDF5 and Portable,
Scalable, Parallel I/O

M. C. Miller

August 20, 2015

Silo/HDF5 and Portable, Scalable, Parallel I/O
Gaithersberg, DC, United States
September 15, 2015 through September 17, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Prepared	by	LLNL	under	Contract	DE-AC52-07NA27344. LLNL-CONF-676454

Silo/HDF5	and	Portable,	Scalable,	Parallel	I/O
Mark	C.	Miller,		miller86@llnl.gov

How many developers are involved and how is the development structured?
Silo	 is	 a	 BSD	 Open	 Source	 library	 for	 I/O	 of	 scientific	 computing	 data	 to	 portable,	 binary	 disk	 files.	
Development	began	in	1993 in	B	Division	at	LLNL.	By 1998,	Silo	expertise helped	to	bring	about	HDF5	and	
then	added HDF5	as	a	middleware	 layer	within	Silo.	Throughout	 its	 life,	15-20	different	developers	have	
contributed	a	total	of	about	5-7	man-years.	Vendor	contracts	for	HDF5	enhancements	to	support	Silo	have	
amounted	to	~$2M.	Occasionally	Silo	gets community	contributions	as	patches	to	a	release.	Currently	Silo	
has	one	primary	developer at	0.2	FTE	plus an	occasional	Windows	developer	both located	 at	 LLNL.	Silo	
consists	of	210K	lines	of	C	code.	Why	C?	It	minimizes	issues	supporting	C,	C++	and	Fortran	callers with	a	
common implementation.	Silo is	hosted	with	a	Subversion	repo,	web	site	for releases	and	email	list	at	LLNL	
and	 a	 Redmine	 site at ORNL.	 Silo’s	 user	 base	 spans	 many	 DOE (e.g.	 LLNL,	 ANL,	 NERSC,	 ORNL),	 DoD,	
academic (e.g.	TACC) and	commercial	sites.	Interest	in	Silo	continues	to	grow	due	to	its	use	in	flagship	LLNL	
codes	like	Ale3d	and	VisIt and,	more	recently,	has	been experiencing a	resurgence	in	Fortran	usage.

Primary methods
Silo	was	developed	to	address	a	fundamental	software	engineering	challenge;	to	foster	the	development	of	
portable,	reusable	software	through	a	common	API,	data	model	and	file	format	for	storing	and	exchanging
data.	 Raw	 performance,	 although	 important,	 has	 proven	 to	 be	 a	 secondary	 consideration to common,	
reusable	software Silo enables.	Although	Silo	is	a	serial	I/O	library,	key	feature	enable	its	use	in	scalable,	
parallel	 applications	 using	 the	 Multiple	 Independent	 File	 (MIF)	 I/O	 paradigm.	 In	 MIF-IO,	 a	 mesh	 is	
decomposed	into	ND domains,	processed	on	NT tasks	and	stored	in	NF files	where	ND,	NT,	NF can	be	chosen	
entirely	independently.	Given	ND=60,	a	Silo	application	can	run	1:1	domains-to-tasks	with NT=60,	NF=6,	2:1	
with NT=30,	NF=3 files,	or	even	3:1	with NT1=12,	4:1	with	NT2=6	of	NT1+NT2=18	total	tasks	with NF=8	files.	
MIF-IO	 has	many advantages;	 the	 programming	model	 is	 simple;	 its	 easy	 to	 retrofit	 existing	 sequential	
apps;	there	is	no	required	global-to-local	and	local-to-global	remapping	during	I/O;	compression	and	other	
data	reduction	services	are	easily	handled	even	in	parallel;	good	performance	demands	very	little	from	the	
underlying	 file	 system;	 application	 controlled	 throttling	 of	 I/O	 resources	 is	 easy;	 great	 flexibility	 is	
permitted	in	the	allocation	of	compute	resources	for	any	given	problem	setup.	Finally,	MIF-IO	is	completely	
analogous	to	how	“big	data”	Map/Reduce	I/O	is	handled as	shards in	the	data	sciences	community.	HDF5	
provides	a	key	layer	of	abstraction	in	the	HPC	I/O	stack.	The	I/O	Stack	is	a	layering	of	software	abstractions	
entirely	 analogous	 to	 IP	 Protocol	 Stack.	 Using	 HDF5	 as	 a	 middleware	 layer,	 we	 can	 often	 address	
performance	issues	by	adjustments	to	HDF5	or	Silo	without	touching	applications;	compression	to	improve	
I/O	and	storage	efficiency,	application-level	checksumming	to	mitigate	file system	reliability	issues;	a	BG/P	
specific	Virtual	File	Driver	to	gain	50x	performance	improvement to	name	just	a	few.

Types of problems/domains/science application problems
Due	to	its	generally	useful	mesh	and	field	abstractions,	Silo	is	used	in	many	different	application	domains.	
At	LLNL,	it	is	used	for	RadHydro,	FEM,	CFD,	CEM,	MD,	and	Structural	Mechanics	codes	to	name	a	few.

Scale of resources commonly used for production runs
Silo	 is	 routinely	used	at	 scales	 ranging	 from	dual-core	 laptops	 to	105+	 core LCF	 computing platforms at	
various	 DOE	 sites.	 Its	 use	 in	 runs	 of	 104+	 cores	 is	 typical.	 While	 Windows/OSX	 laptops	 can	 hardly	 be	
considered	scalable,	the	ability	to	develop,	test	and	debug	Silo	applications	on	such	systems	is nonetheless
an	invaluable	enablement	to	developing and	supporting capabilities	for	extreme	scale.

Supercomputers regularly used
Silo	 sees	 use	 predominantly	 at	 LLNL	 but	 also	 at ANL,	 ORNL	 and	 other	 DOE	 and	 DoD	 sites,	 academic	
institutions such	as	TACC and	and	even	some	commercial	companies.	

Libraries/tools for prototyping
Valgrind,	Totalview,	HDF5,	GNU	compiler	tools	(gcov,	mudflap)	

Prepared	by	LLNL	under	Contract	DE-AC52-07NA27344. LLNL-CONF-676454

Describe efforts to develop code portable across diverse architectures
The	HPC	I/O	Stack	offers	a	number	of	layers	at	which	portability	solutions	have	been	developed.	In	the	late	
90’s	the	MPI-IO	interface	provided	portability	across	GPFS,	Lustre and	PVFS	file systems	being	developed	in	
that	era.	The	HDF5	 interface	provides	portability	of	data	across	different	CPU	architectures	(e.g.	endian-
ness,	 float-format),	 compression	 schemes	 (e.g.	 gzip,	 szip,	 fpzip,	 hzip) and	 portability	 of	 interface	 across	
different	storage	system	interfaces	(MPI-IO,	Posix,	Mmap,	Globus,	NDGM,	VOL).	The	Silo	layer	has	provided
portable	 mesh	 and	 field	 abstractions	 across	 different	 I/O	 libraries	 (HDF5,	 netCDF,	 PDB,	 Tarus)	 though	
HDF5	is	now	the	only	of	these	interfaces	routinely	used	in	scalable	applications	using	Silo.

Where were the abstractions?
The	 HPC	 I/O	 stack	 is	 a	 set	 of	 layered	 abstractions.	 At	 the	 top,	 applications	 use	 the	 Silo	 API	 and	 its	
computational	 object	 abstractions	 (meshes	 and	 fields).	 In	 turn,	 Silo’s	 mesh	 and	 field	 abstractions	 are	
implemented	 in	 terms	 of	 programming	 language abstractions	 (arrays,	 structs,	 lists).	 These	 language	
abstractions	are	in	turn implemented	in	terms	secondary	storage	interfaces	and	abstractions	(e.g.	MPI-IO,	
stdio,	 files,	 byte	 lengths	 and	 offsets).	 This	 multi-layer	 I/O	 stack has	 provided	 great	 flexibility	 in	
incorporating	performant	solutions.	In	general,	the	best	solutions	have	been	implemented	as	deeply	within	
the	I/O	stack	as	possible	leaving	the	upper	level	Silo	API	and	codes	that	use	it	untouched.

How much code re-use was possible? If something was not possible, describe why.
Throughout	its	20+	year	 life	and	through	several	transitions	in	order	of	magnitude	of	scale,	a	majority	of	
the	Silo	library	has	proven	reusable	for I/O	needs	of	scalable	HPC	codes.	On	a	few	occasions,	new objects	
that	fit	within	the	current	abstractions	have	been added.	But,	the	original abstractions	have	continued	to	
work.	There	is,	however, a	growing	need	to	support	high	order	elements introducing	a	fundamental	change	
in	Silo’s	mesh	abstractions.	In	one	instance,	an	object	was	added	to	Silo	which	suffered	from	scaling	issues
and	was	replaced.	Although	Silo	needs	some	housekeeping,	refactoring	and	modernization,	its	API	and	data	
model	 remain	 applicable	 to	 current	 scalable	 applications.	The	 fact	 that	 the	 same	Silo	API	has	 supported	
codes	for	many	years	has	meant	that	little	effort/cost	has	been	necessary	to	re-engineer	the	I/O	portions	of	
these	codes	as	scales	have	grown.

What successes have you had with performant code across different architectures? Were the
same algorithms applicable at all across the architectures?

The	basic	MIF	parallel	I/O	paradigm	has	served	well	through	several	transitions	in	order	of	magnitude	of	
scale. On	 the	 other	 hand,	 a	 conditionally	 compiled	 MPI-IO	 optimization	 code	 block	 in	 HDF5	 had	 been	
accidentally	disabled	and	gone	undetected	in	multiple	releases	of	HDF5. This	experience	underscores	 the	
fact	that	manually	maintaining	multiple	implementations	of	a	capability can	be	a	challenge.

What approaches did you reject and why? What was the leading contender rejected?
Where	 Silo	 is	 concerned,	 we	 have	 rejected	 concurrent	 I/O	 to	 a	 single,	 shared	 file	 (SSF)	 as	 a	 basic	 I/O	
paradigm	due	to	its	inflexibility	and	challenges	in	tuning	it	to	get	good	performance.	However,	this	decision	
is	worth	revisiting	periodically	to	assess	if logistical	constraints	and	performance	tuning	have	improved.

What is your greatest fear going to exascale for application portability and functionality?
Where	I/O	is	concerned,	we	need	to	transition	from	push to	pull paradigms.	And,	we	need	the	added	ability	
for	users	to	control when and	how	much data	is	pulled. In	a	pull	paradigm,	applications	simply announce	
they	hayve	data	ready at	 the	end	of	each	main	compute	cycle. A restart consumer,	 for	example, monitors	
system	MTBF	params,	power	 consumption,	 etc.	 and	pulls	 data	 from	 applications as	needed	 to	minimize	
restart	 costs.	 Likewise, post-processing	 and analysis	 consumers	would pull	 data	 from	codes	 to	meet	 the	
needs	of	user’s	analysis	workflows.	Pulling	data	would	include	the	ability	to	reduce	the	data	being	captured	
by	various	means	 including deciding	when	data	 is	pulled	by	various	 triggering	conditions and	how	much	
data	is	pulled	by	various	data	reductions	including	spatio-temporal	&	feature-based	subsetting,	resolution	
reduction,	precision	reduction, statistical	reductions,	lossless	and	loss-controlled compression.	In	this	new	
pull	paradigm	for	I/O,	the	code	to	manage	data	capture	for	any purpose	is	moved	out	of	apps (where	it	is	
currently	often	duplicated among	apps)	 and	 centralized	 to	 a	 common	 scalable	data	management	 system	
that	all	codes	can	benefit	from.

